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ABSTRACT

There are several diseases which can be characterized by the

patient being in one of a finite number of states; e.g. relapse, remissive,

toxic, etc. These states may be both transient and absorbing. Other

authors have proposed similar models to describe data dealing with time

dependent phenomena which have assumed that the distribution spent

within any state is exponential. These models are all Markovian. In

this paper we develop non-Markovian models which allow arbitrary

distributions within a state. The model is applied to clinical trials

of patients with acute leukemia who are undergoing experimental

therapy. The agreement of the model and the data is very good.
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1. Introduction

There are several diseases in which possibly recurrent phases may

be distinguished. Different Investigators have proposed Markovian models

to describe data dealing with the time dependent phenomena associated with

these diseases. We mention in particular the work of Fix and Neyman on

cancer, [1],0 the work of Marshall and of Goidhamer on. the epidemiology

of mental disease, [ 2] , and the work of Adling on tuberculosis, [ 3]. All

of these assume that the distribution of time spent in an occurrence of a

particular phase is negative exponential. In the following paper we present

a semi-Markov model for data analysis, in which it is possible to consider

any distribution for stay in a given phase. the theory has been applied to

data on victims of both acute myelocitic and acute l1 mphocytlc leukemia

who have received experimental drug therapy, In our application we have

found that gamma distributions give a convenient representation of the

relevant probability densities. Hence any Markov theory will not be

sufficient for the study of the statistics relating to leukemia. %e fool
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that the semi-Markov model presented here has wide applicability to

many clinical situations.

The advantage of having a model is that it guides the investigator

in the type and kinds of data to collect. Further a model serves as a

convenient frame of reference for posing questions and suggesting further

experiments. Too often the "effectiveness" of a treatment is measured

by the "1 success-ratio" . It Is clear that other factors are also important;

e. g. (using the terminology of the acute leukemia study), time in a remissive

state, time to reach a remissive state, degree of toxicity, time to failure (if

ailment is a fatal one), time to complete cure, etc.

2. Formulation of the Model

The health of a patient can be characterized at any instant of time by

being in one of a finite number of states. In the clinical terminology, the

patient may be In a relapse state, a remissive state, toxic state, etc. Those

remissive and relapse states may be further classified by the degree of

remission or relapse and also by how many and kinds of relapse or remissions

preceded the present state. In addition to these transient states, the patient

may have entered a terminal (or absorbing, in the language of Markov processes)

state such as failure, failure from other causes, cure, or patient lost.

We shall let T denote the set of transient states and A the set

of absorbing states. Also we define
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U i(t) = probability of being in state i at time t

qi(t) = probability density function for a single time

in state i T
00Q1(t) = f qi(x)dx

t

wi(t)dt = probability of leaving state i (i c T) during the

time interval (t, t + dt) ;

P ij = probability of passing from state i to j, conditional

upon leaving i (by convention we set Pii = 0 for

ia T).

It will be convenient to define the vector and matrix analogues of

the above quantities. For this purpose we let

JZT(t) =column vector of Ui(t), i E T

JZA(t) = column vector of U 1(t) , i a A

,W t) = (6ijq 1(t)) where 6 1 is the Kronecker delta

Q(t) = (6ijiQ(t))

pj(t) =column vector of w i(t) ; 1o =(Ui(O)6i,), Ic T,

A T

A 0

kT
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As a further convention we denote the Laplace transform of any

time dependent function by the same function with argument s and an

asterisk; i.e. w, (s) f f{w(t))dt, S(s) f {w(t)} dt

Using familiar arguments in the theory of semi-Markov processes (4]',

one can obtain the following equations for X (s) and s)

(S) OS S,~ S

T4(s) = Q*s)X + *, (-),,+, (S) (2)

which yield the solutions

1 * --1 0

J(S() U (s~-j3*,] -S 0 (4)

Let UA(t) denote the probability of being in an absorbing state at time t.

Then we have

s Ut(s) (5)
i T

from which the moments of the time to reach absorption can easily be calculated

by noting that the Laplace transform of the survivorship function; i. e.

G(t) = Pr. (failure time > t )is
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G (a) = ,U*(8) (S (6)

where 4 is. a column vector. of appropriate dimension having all elements

unity.

For the purpose of writing the moments associated with G(t) ,

define

mi(k) = tkq(t)dt M(k) ((mi(Q61 1 )

= J im W (s) =( u •-,) .
S 0O+

Note that T is the expected number of times state I is visited.

Then the mean and variance of the time to reach absorption are

E(t) = lim G*(s) = ,VM(l)[•-L' •,' (I),T (7)
s4 O+

- .-Jm (2 + [G (s)I ,M [J(-,'(5.0+ 0+

(8)

where

,• .•= M(Z) - M•Z(i)

• (9)
T 0

= T

i
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Relatively simple recursive relations can be derived for the higher moments.

In addition to the results given so far, it is possible to develop a

theory in which the p. d. f. qI(t) is replaced by q j(t), ti.e., in which

the time spent in any state depends either on the succeeding or the following

state. However, the results do not have the simplicity of those of Equations

(7) and (8). They will appear in a forthcoming publication. Another

statistic of some interest in drug evaluation is the total time spent in a

given transient state. This Is important in the leukemia study; since it

isr desirable to prolong a patient's life in a condition of remission rather

than in a condition of active illness. Let us consider a single remissive

state I and partition the transition matrix £ as

A I T-i

A
S. (10)

II T-i

Then the prnbability of entering state I at least once starting from state J is

h"" 1- j # I
T 

(11)

The first two moments of the total sojourn time in state i condi~tonal on
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starting from state j are

Lj (l) I - hii. 6 Ii + I - hi ( -6 )

m (2) 2m 2(')hhj

il(2) = 1j-T.U + 1 z ]C6 +h1 1 ((-6

3. Applications to Acute Leukemia Clinical Data

A large number of clinical trials were conducted by the Acute Leukamia

Group B (Frel at al. [ 5] ) on patients having acute leukemia. In this section

we will illustrate the application of our model to a portion of these data. A

more complete discussion of the data will be given in another publication.

All patients entered these clinical trials while in a state of relapse.

The data examined in this paper were for patients who were initially given

Methottexate (MTX). The patients either never responded and expi*d, or

eventually reached a remissive state. A distinction was made between a

partial and complete remission. If the patients did not show remission

within the first 6 weeks, the MTX therapy was stopped, a period of two

weeks was allowed to elapse, at the conclusion of which the surviving

patients who were still in a state of rplapse were given 6-mercaj~opur'ne

(6-MY). Further, if a patient who was in remission entered a relapsed

state, the therapy was changed to the lternate dru (MU or 6.1RU).

L
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In this paper we will apply the model to date from 26 patients who achieved

a state of remission within 8 weeks of entering these clinical trials. In our

"application we will be mainly interested In the distribution of the time to

failure. Since, by definition, a remissive state Is always followed by a

relapse state we will combine the sojourn time in a relapse state with the

sojourn time of the remissive state which immediately preceded it. Another

characteristic of this application is that the data indicate different sojourn

time distributions which depend on the number of times the patient has been

in the state. With these characteristics of the process in mind, we define

the six states:

8O : failure (death)

S1 : initial relapse state (condition of patient on

entering study)

82 : first partial remission (also includes subsequent

relapse)

83 : second partial remission (Includes subsequent

relapse)

84 : first complete remission (includes subsequent

relapse)

S85 : second complete remission (includes subsequent

relapse)

The communication among states may be summarised in the following diagram

whore all states connect with 8s.
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s2 s3

1

S4 s5.

Figure 1

State Diagram for a Model of Leukemia

An investigation of the distribution of sojourn times within the

various transient states showed that with the exception of the initial

state, these distributions can be well approximated by gamma distributions,

t) t) r(a), t >, a > 0

The parameters (a, X) were estimated from the data by the method of

maximum likelihood with the aid of the convenient tables of Wllk,

Gnanadesikan, and Huyett [6]. Table 1 summarixze the results of

these calculations.
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Table 1

Sample Means, Variances, and Maximum Likelihood Estimates of the
Parameters of Gamma Distribution *

state a . _ Sample size

82 (first P.R.) 2.3 0.101 23.1 189 14

53 (second P. R.) 2. 9 .122 23.6 .215 7

54 (first C. R.) 4.7 .132 35.6 310 27

S5 (second C. L 15.5 .463 33.6 90 7

It remains to obtain estimates of the transition probabilities ,

before the formulas of the proceeding section can be applied, The observed

relative froquencies (conditional on going to a remission state) observed in

these clinical trials were used as estimates of the (pii) . The numerical

results aret

a 0 81 82 83 S4 8S

0 0 1 9 0 0

81 0 o0 10/26 0 16/26 0

8 2 5/10 0 3/10 0 2/10

83 1 0, 0 0 0 0

a4 9/16 0 0 4116 0 3/16

8 1 :0 0 0 0 0

* Theas stoimates ae based an &all poseant" w weft Wo a wPIm ON"

regava~ of "beober t' 141 the A ul ""Is e . w a r
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The estimate of the transition matrix , and the parameters of the gamma

distribution summarize the relevant information with the exception of the

sojourn time distribution for the initial relapse state (Si). Here the

distribution is complicated by being truncated at the end of eight weeks.

Since the data are summarized in units of a week, this distribution

(conditional on a patient reaching a remissive state) was assumed

to be a discrete distribution where pn denotes the probability of

entering a remissive state after n weeks in the Initial relapse state.

The observed relative frequencies were taken as the estimates for Pn

and were:

n= 2 3 4 5 6 7

Pn= (2/26 6/26 8/26 5/26 4/26 1/26]

A check on the model can be obtained by comparing the sample

mean and variance of the time to reach failure with the theoretical formulas

given in (7) and (8) . The numerical results are:

Data Model

Mean 48.4 49.7

Variance 515. 525.

We now turn our attention to estimating the distribution of the time

to reach the failure state. The probability density function for those patients

IJ
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reaching a remissive state can be calculated using (6). After some

reduction, the result is:

g0 (t) = p2 0 P12[i9l* 921 + P3 0[ PI 2 P2 3 (9P * '2 * 31) ÷ p14 p4 3 (9l * "3* 94)]

+ po4 0P14[p*l 4 ] + P50oP 12 PZS(9 1 * 02 * 9S) + p14 p4 5 (PI * 94 * 95)]

(The notation p1 * 2 denotes the convolution of PI(t) and p2 (t) , where

el(t) denotes the frequency function of the initial relapse state. )

Note that g0 ( t) is made up of a mixture of distributions which involve

convolutions of gamma distributions. For our purposes, the approximation of

convolutions of gamma distributions by a gamma distribution with the same

first two moments was deemed a sufficient approximation. Figure 2 contains
t

a plot of G0 (t) = f g0 (x)dx along with the sample data. The agreement
0

is remarkable.

We would like to thank Dr. Edmund Gehan of the National Institutes

of Health for helpful discussions of this problem and his cooperation in

providing us with records of the leukemia study.
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